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Abstract. The study of vegetation community and structural change has been central to ecology for over a
century, yet the ways in which disturbances reshape the physical structure of forest canopies remain relatively
unknown.Moderate severity disturbances affect different canopy strata and plant species, resulting in variable
structural outcomes and ecological consequences. Terrestrial lidar (light detection and ranging) offers an
unprecedented view of the interior arrangement and distribution of canopy elements, permitting the deriva-
tion of multidimensional measures of canopy structure that describe several canopy structural traits (CSTs)
with known links to ecosystem function.We used lidar-derived CSTs within a machine learning framework to
detect and describe the structural changes that result from various disturbance agents, including moderate
severity fire, ice storm damage, age-related senescence, hemlock woolly adelgid, beech bark disease, and
chronic acidification. We found that fire and ice storms primarily affected the amount and position of vegeta-
tion within canopies, while acidification, senescence, pathogen, and insect infestation altered canopy arrange-
ment and complexity. Only two of the six disturbance agents significantly reduced leaf area, counter to
common assumptions regarding many moderate severity disturbances. While findings are limited in their
generalizability due to lack of replication among disturbances, they do suggest that the current limitations of
standard disturbance detection methods—such as optical-based remote sensing platforms, which are often
above-canopy perspectives—limit our ability to understand the full ecological and structural impacts of distur-
bance, and to evaluate the consistency of structural patterns within and among disturbance agents. A more
broadly inclusive definition of ecological disturbance that incorporates multiple aspects of canopy structural
change may potentially improve the modeling, detection, and prediction of functional implications of moder-
ate severity disturbance aswell as broaden our understanding of the ecological impacts of disturbance.
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INTRODUCTION

Disturbances generally alter forest structure,
but variation in the severity, intensity, and fre-
quency of disturbance leads to variable structural
outcomes. Shifting vegetation composition,
abundance, and distribution patterns further
shape disturbance response (Pickett and White
1985, Frelich and Lorimer 1991, Frelich and Reich
1999, Frolking et al. 2009). While ecologists have
long studied how disturbance severity, intensity,
and frequency reshape vegetation structure
(Connell 1978, Johnstone et al. 2016, Turner et al.
2016, Cale et al. 2017), the structural differentia-
tion as a function of the agent of disturbance has
not been systematically characterized across
forested ecosystems using standardized methods
(Jimenez et al. 1985, Foster et al. 1999, Amiro
2001, Łaska 2001, Hanson and Lorimer 2007,
Buma 2015).

Moderate severity disturbances (i.e., non-stand
replacing or partial disturbances, also referred to
as lower magnitude change) can produce a wide
array of structural outcomes, including highly
heterogeneous structural conditions across a vari-
ety of spatial scales (Woods 2004, Hanson and
Lorimer 2007, Fahey et al. 2015). At moderate
severities, the importance of disturbance agent in
driving variable structural and functional out-
comes may be equivalent in magnitude to other
well-characterized factors such as severity, inten-
sity, and frequency (Hardiman et al. 2013). With-
out considering the structural divergence
associated with different disturbance agents, our
ability to construct generalized frameworks to
characterize disturbance effects and make infer-
ences about structure–function relationships fol-
lowing moderate disturbance is limited (Turner
et al. 2001, White and Jentsch 2001).

Separate investigations of extreme weather,
fire, windthrow, insect invasion, and pathogen
outbreak events suggest disturbance agents
imprint quantifiably distinct patterns of vegeta-
tion redistribution and structural change (Dale
2001, Hanson and Lorimer 2007, Frolking et al.
2009, Plotkin et al. 2013, Oldfield and Peterson
2019, Peterson 2019, Fig. 1). Some disturbance

agents affect the vertical distribution of vegeta-
tion—ice and windthrow reduce foliage in the
upper canopy (Frolking et al. 2009, Weeks et al.
2009, Fig. 1A), while ground fires may dispro-
portionately remove subcanopy vegetation
(Turner et al. 2001; Fig. 1B). Host-specific insects
and pathogens, including beech bark disease and
hemlock woolly adelgid, alter the horizontal dis-
tribution of vegetation through the creation of
canopy gaps and canopy thinning (Orwig and
Foster 1998, Fahey et al. 2015, Arthur et al. 2017,
Fig. 1C).
Most evidence that disturbance agents create

divergent structural outcomes comes from stud-
ies that are either solely qualitative or limited in
the structural outcomes they consider (Franklin
et al. 2002, Roberts 2007). Disturbance effects on
vegetation structure are inherently multidimen-
sional and may not be easily summarized, or
detected, using a single structural parameter
(Lowman and Rinker 2004, Frolking et al. 2009),
yet the effects of disturbance on vegetation struc-
ture are typically described using dimensionless
structural parameters (Waring and Schlesinger
1985) or as unidimensional shifts in vegetation
canopy height or openness (Parker and Brown
2000, Weeks et al. 2009, McMahon et al. 2015).
For example, leaf area index (LAI) is an estimate
of leaf area often used to characterize structural
change resulting from disturbance (Waring and
Schlesinger 1985). It may change only minimally
following a low-to-moderate severity distur-
bance event which may limit its utility as a dis-
turbance detection measure (Cohen et al. 2016).
Although disturbances frequently alter several
canopy structural traits concurrently, the relative
performance of LAI versus canopy structural
trait metrics in characterizing forest disturbances
has not been addressed.
Multidimensional approaches may help detect

and differentiate moderate severity disturbance
agents. One promising framework describes sev-
eral aspects of canopy structure to define a suite
of canopy structural traits (CSTs; Fahey et al.
2019b) including vegetation density, height,
arrangement, cover, and structural complexity
(Atkins et al. 2018a; Table 1; Fig. 2). Canopy
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structural trait metrics are derived from terres-
trial lidar (Hardiman et al. 2011, McMahon et al.
2015, Ehbrecht et al. 2016, Atkins et al. 2018d,
Shiklomanov et al. 2019) and linked with a vari-
ety of ecosystem functions, including primary
production (Hardiman et al. 2011, Gough et al.
2019, LaRue et al. 2019), light acquisition (Stark
2012, Atkins et al. 2018b), microclimate (Ehbrecht
et al. 2017), and resource-use efficiency (Hardi-
man et al. 2011). The CST framework includes
integrative, multidimensional measures of
canopy structure (Table 2), including metrics that
quantify canopy complexity, such as canopy
rugosity. Canopy rugosity is a metric that sum-
marizes vertical and horizontal variance in vege-
tation density and is a robust indicator of
functional change (Gough et al. 2019). CSTs pro-
vide a powerful, standardized methodology for
characterizing multiple aspects of structural
change following disturbance, thus potentially
enabling the detection of disturbances not suffi-
ciently characterized by single measures of struc-
tural change.

We hypothesized that the multivariate CST-
based approach would better describe structural
change than a unidimensional, leaf-area-only
approach among a series of moderate severity
disturbances, including ice storm, low-severity
ground fire, age-related senescence, chronic acid-
ification, and pathogens and insect outbreaks
within eastern temperate forests (Table 1). Fur-
ther, we hypothesized that disturbance agents
would differ in which CSTs they most strongly
alter (i.e., canopy height, area/density, arrange-
ment, openness, and complexity; Fig. 2) due to
agent-specific effects on canopy structure (Atkins
et al. 2018a, Fahey et al. 2019a). We expected fire

and ice storm damage to preferentially affect
total leaf area, as well as area/density and canopy
height. Both fire and ice storms are pulse distur-
bances that occur over acute time intervals often
resulting in reductions in canopy leaf area and
vegetation height throughout and across the
canopy (Plotkin et al. 2013, Cote et al. 2014,
Turner et al. 2016, Oldfield and Peterson 2019,
Fahey et al. 2019b). We expected species-specific
disturbances surveyed would primarily alter
canopy traits such as arrangement, height, com-
plexity, and openness (Fig. 3).

METHODS

We surveyed six temperate forest sites
(Table 1), each of which was moderately dis-
turbed by a different agent, including distur-
bances from age-related senescence, chronic
acidification, insect, and pathogen outbreaks. We
estimated how each agent altered canopy struc-
ture through surveys of pulse disturbed sites
before and after disturbance and, in the case of
temporally diffuse press disturbances, by sam-
pling disturbed and nearby control (undis-
turbed) sites concurrently. The use of different
sampling schema is not ideal but allows for com-
parisons among or between disturbed and undis-
turbed areas. We adopted a case-study approach
whereby analyses were made only within sites—
comparing disturbed to undisturbed areas.
Given varying site characteristics, sampling
times, and data limitations, it is important to note
that the potential to confound site with distur-
bance type. Therefore, we limit or inferences and
descriptions to how each disturbance event
changes ecological structure at that singular site.

Fig. 1. Hypothesized structural outcomes of disturbance agents informed by previous studies. Moderate sever-
ity fire will affect the lower canopy (A), while ice and wind will affect the upper canopy (B). Species-specific dis-
turbances work at the individual level (e.g., targeting individual trees), creating canopy gaps as a result of
induced tree mortality (C).
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This approach offers a novel and informative
way to characterize and differentiate moderate
severity disturbances, but requires further vali-
dation, replication, and examination to reach its
full potential.

Site and disturbance descriptions
Fire, Great Smoky Mountains National Park,

Tennessee.—In November–December of 2016, a ser-
ies of arson fires swept through the Great Smoky
Mountains National Park, burning over 6800 ha.

Portions of the affected range fell within the study
area of the National Ecological Observatory Net-
work (NEON) Twin Creeks relocatable terrestrial
site (GRSM). We compared pre- (2016) and post-
fire (2017) lidar data collected from six NEON for-
est inventory plots (Atkins et al. 2018d). Forests in
GRSM are dominated by overstory tulip poplar
(Liriodendron tulipifera), oak (Quercus spp.), and red
maple (Acer rubrum), with rhododendron (Rhodo-
dendron maximum) and mountain laurel (Kalmia lati-
folia) prominent in the understory.

Table 1. Site, data collection, and disturbance information.

Location Coordinates
Data
period

Disturbance
type Details

Great Smoky
Mountains National
Park (TN)

35.709° N,
�83.395° W

2016–
2017

Fire Wildfires burned over 6800 ha in and around Great Smoky
Mountains National Park in TN. Many plots associated
with the NEON GRSM site were affected, but not severely
burned (low to moderate damage). We compared pre-fire
data collected in 2016 to post-fire data from 2017.

Fernow
Experimental Forest
(WV)

39.054° N,
�79.670° W

2016 Chronic
acidification

Since 1989, ammonium sulfate (35.5 kg N�ha�1�yr�1 and 40.5
5 kg S�ha�1�yr�1) has been applied yearly to watershed 3
(WS3) a deciduous, hardwood forested watershed.
Watershed 7 (WS7), an adjacent watershed, serves as a
control. Here, we compare data collected in 2016.

Indian Point (MI) 45.484° N,
�84.680° W

2014,
2017

Pathogen Indian Point is a protected forest in northern Michigan that
has been affected by beech bark disease over the past half-
decade. We compare data from the same plots collected in
2014 and 2017.

UMBS (MI) 45.555° N,
�84.721° W

2012,
2016

Succession or
mechanical
damage

The Forest Accelerated Succession Experiment (FASET; US-
UMd) facilitated the stem girdling of over 6700 trees over
39 ha on the property of the University of Michigan
Biological Station (UMBS). We compare data from the
treatment (US-UMd) to the control (the adjacent
AMERIFLUX site, US-UMB) for both the years 2012 and
2016. Each as a separate analysis to account for change over
time.

Hubbard Brook
(NH)

3.942° N,
�71.745° W

2015–
2017

Ice storm The ISE was established in a 70- to 100-year-old mixed
hardwood stand dominated by American beech (Fagus
grandifolia), sugar maple (Acer saccharum), red maple (Acer
rubrum), and yellow birch (Betula alleghaniensis). Ten
20 9 30 m plots were established in summer 2015, and pre-
treatment measurement collections were initiated. Two
plots were randomly assigned to each of five treatments
with variable ice intensity targets and frequency: (1)
control; no experimental icing applied, that is, 0 mm; (2)
low; 6.4 mm of ice in year 1 only; (3) moderate; 12.7 mm of
ice in year 1 only; (4) double; 12.7 mm of ice in year 1 and
year 2; and, (5) high; 19.0 mm of ice in year 1 only. Ice
treatments were implemented during subfreezing
conditions in 2016 (year 1; across five different dates) and
2017 (year 2; January 14). Ice addition was targeted toward
the inner 10 9 20 m of the plots, with a 10 m wide buffer
that was not unaffected by the treatment making up the
balance of the plot.

Harvard Forest (HF) 42.531° N,
�72.188° W

2017 Hemlock
woolly adelgid

HWA first seen in HF in 2008 and was widely distributed by
2012. Significant tree decline and noticeable tree mortality
were noted by 2016. We focused on a 60 9 150 m section of
the ForestGEO plot located on Prospect Hill where there
were concurrent tree mortality and lidar data. Low severity
plots were chosen as those with less than 10% basal area
mortality threshold (Appendix S1).
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Ice storm damage, Hubbard Brook Experimental
Forest, New Hampshire.—Ice storms are ecologi-
cally influential disturbance agents in many
areas of the eastern USA, including the forests of
New England where return intervals can be
fewer than 5 yr (Irland 2000, Changnon 2003).
The Ice Storm Experiment (ISE) at Hubbard
Brook Experimental Forest (HBEF) was initiated
in 2015 to mimic the mechanical damage result-
ing from severe ice storms (Rustad and Campbell
2012). Water was applied to vegetation during
sub-zero conditions in 2015 to achieve varying
levels of ice thickness—light (6 mm), moderate
(12 mm), and heavy (19 mm). Lidar data were

compared to assess the effects of ice on canopy
structure by comparing pre- and post-treatment
data across severity levels (e.g., light, moderate,
heavy) in 2015, 2016, and 2017 (Fahey et al.
2019b). Forests in HBEF are dominated by Amer-
ican beech (Fagus grandifolia), yellow birch (Betula
alleghaniensis), and sugar maple (Acer saccharum).
Pathogen, beech bark disease at Indian Point,

Michigan.—American beech bark disease (BBD)
occurs following the invasion of a beech scale
insect, Cryptococcus fagisuga (Ehrlich 1934), and is
widespread in North America (Cale et al. 2017).
Feeding by this insect causes two opportunistic
fungi (Neonectria faginata and Neonectria ditissima)
to produce cankers on the bark, the continuous for-
mation of which results in stem girdling and subse-
quent tree death (Ehrlich 1934, Arthur et al. 2017).
To examine the canopy structural change resulting
from BBD, we compared CSTs from 2014 to 2017
for Indian Point (IP) in northern, lower Michigan.
IP is a relict forest dominated by large eastern hem-
lock (Tsuga canadensis), American beech (Fagus
grandifolia), and white pine (Pinus strobus). IP is also
known as Colonial Point Memorial Forest and is
land held in trust by the Burt Lake Band of Chip-
pewa and Ottawa Indians as well as the University
of Michigan Biological Station. We have opted to
use the former name of the area, Indian Point, after
consultation with the Burt Lake Band.
Insect infestation, Hemlock woolly Adelgid at

Harvard Forest, Massachusetts.—Hemlock woolly
adelgid (HWA) is an invasive, aphid-like insect
first reported in the USA in Virginia in 1951 (Havill
et al. 2006). Since its introduction, HWA has spread
to 19 states from Georgia to southern Maine, affect-
ing millions of trees and threatening the range of
eastern hemlock. The insect can feed on all sizes
and age classes of hemlock trees, often killing trees
within 10 yr (Orwig and Foster 1998). At Harvard
Forest, HWA was first seen on Prospect Hill in
2008 and was widespread by 2012. By 2016, signifi-
cant hemlock decline and noticeable mortality
began to occur (Orwig and Foster 1998). We com-
pared CSTs in 2017 from areas of low and moder-
ate infection—with low infection classified as less
than 10% basal area mortality (Appendix S1:
Fig. S1) at Prospect Hill. While this represents a
deviation from the strictly disturbed to undis-
turbed method used at other sites, it was a neces-
sity given the lack of completely undisturbed areas
at Harvard Forest.

Fig. 2. Hypothesized relative change from baseline
conditions (in units of absolute value of percentage
change) for leaf area as well as canopy structural traits
defined in Table 2 (Atkins et al. 2018a). Hypothesized
change is based on empirical data for moderate severity
fire (Kinnaird and O’Brien 1998, Alencar et al. 2006,
Boer et al. 2008), ice storm damage (Rhoads et al. 2002,
Weeks et al., 2009), while species-specific hypotheses
are informed from conservative extrapolations based on
qualitative descriptions of related disturbances (Orwig
and Foster 1998, Gough et al. 2013). Disturbances such
as fire and ice are expected to alter leaf area, density,
and canopy height, while acidification, senescence,
insect, and pathogen outbreaks are expected to alter
canopy height, openness, complexity, and arrangement.
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Successional change/senescence, University of
Michigan Biological Station, Michigan.—The Forest
Accelerated Succession Experiment (FASET; for
continuity, we will use the AmerifFlux ID for this
site, US-UMd), located in northern lower Michi-
gan, is a large-scale manipulative experiment, in
which 6700 mature aspen (Populus spp.) and
birch (Betula spp.) trees were stem-girdled within
a 39-ha area during 2008 to accelerate succes-
sional processes leading to the decline of these
early successional species (Nave et al. 2011,
Gough et al. 2013). The treatment forest is paired
with a nearby undisturbed control site of similar
forest composition (University of Michigan Bio-
logical Station AmeriFlux Core Site, US-UMB).
We compared CSTs for control and treatment to
each other for both 2012 and 2016, respectively,
with the supposition that 2016 represents further
successional progress compared to the control.

Chronic acidification, Fernow Experimental
Forest.—Chronic atmospheric acid deposition is a
persistent stress on many forests across the USA
but is of acute concern in the Allegheny and

Appalachian Mountains of West Virginia, Ohio,
Pennsylvania, and New York. Even though
reductions in acid deposition spurred by the
1990 Clean Air act amendments have helped mit-
igate this environmental stressor (Mathias and
Thomas 2018), its legacy persists in altered soil
chemistry, forest composition, and forest struc-
ture (Warby et al. 2008, Horn 2018). Manipula-
tive experiments that include experimental
additions of acid-precursor compounds have
been deployed across the country to address
ecosystem-related questions surrounding acid
deposition. Among these is a long-term experi-
ment at the Fernow Experimental Forest in West
Virginia. Continuous, annual additions of ammo-
nium sulfate (35.5 kg N�ha�1�yr�1 and 40.5 kg
S�ha�1�yr�1) began in watershed 3 of the Fernow
Experimental Forest in 1989 (Adams et al. 2007).
This treatment watershed was paired with con-
trol watershed 7 as part of the long-term Fernow
Watershed Acidification Study. The treatment
watershed exhibited depletion of both calcium
(Ca+) and magnesium (Mg+; Adams et al. 2007)

Table 2. Detailed description of canopy structural parameters derived from terrestrial lidar using the forestr
package in R.

Parameters Symbol Units Description

Area and density
Vegetation area
index (VAI)

VAI Ratio of vegetation area of the canopy per ground area

Maximum VAI VAImax The VAI of the densest 1 m2 of the canopy (x, z) in units of VAI
Mean peak VAI VAIpeak Mean of VAImax for a plot, measured at 1-m intervals
SD of height of
max VAI

rZVAI Standard deviation of the height of VAImax for each column

Height
Mean leaf height H m Mean of column measured density-adjusted vegetation height (i.e., lidar return

densities adjusted for occlusion using the Beer-Lambert Law (Beer 1852;
Lambert 1760)

Height2 rH m Standard deviation of column mean leaf height
Mean outer
canopy height

MOCH m Mean of the column maximum canopy height

Maximum
canopy height

Hmax m Maximum canopy height as on one measure for the entire plot (i.e., the greatest
measured lidar height)

Arrangement
Canopy porosity PC ratio Ratio of bins with no lidar returns to the total number of bins

Cover and openness
Gap fraction Θ ratio Transect mean of column ratio of sky hits relative to total leaf returns

Complexity/
heterogeneity
Canopy rugosity RC m Transect variance of column leaf density variance
Top rugosity RT m Standard deviation of column maximum canopy height
Effective no.
layers

ENL Description of vertical canopy structure based on the occupation of 1 m wide vertical
layers by canopy elements relative to the total space occupation of a stand

Note: Table adapted from Atkins et al. (2018).
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with cascading effects on vegetation. The control
watershed is now a mixed-hardwood forest com-
prised primarily of maple (Acer spp.), red oak
(Quercus rubra), and tulip poplar (Liriodendron
tulipifera), while the treatment watershed is a
mixed-hardwood forest dominated by black
cherry (Prunus serotina) and red maple (Acer
rubrum). We compared CSTs from treatment (wa-
tershed 3) and control watersheds (watershed 7)
—each with similar climate and topography and
are located adjacent to each other within the Fer-
now Experimental Forest.

Data collection and analyses
Canopy structural complexity.—We collected

canopy structural data with a user-mounted,
portable canopy lidar system equipped with an
upward facing, Riegl LD90 3100VHS near-in-
frared pulsed-laser operating at 2000 Hz (Riegl
USA, Orlando, Florida, USA). This system gener-
ates continuous LiDAR returns from a slice of
the canopy as it is walked along a measured tran-
sect. Plot dimensions and sampling areas varied

by site, but data collected at each site included
60–120 m total scan lengths per plot, comprised
2–3 linear transects per each plot, beyond the
range required to achieve stable landscape-level
measures of canopy structure (Hardiman et al.
2018). A more detailed description of the devel-
opment and operation of this terrestrial laser
scanning system is available in Parker et al.
(2004) and Hardiman et al. (2011). We derived
CST metrics at the plot level using the forestr
package (Atkins et al. 2018a, d) in R 3.5 (R Core
Team 2018). forestr produces a suite of CST met-
rics that describe canopy area/density, openness,
height, complexity, and arrangement (Table 2)—
greater detail is available in Atkins et al. (2018a).
Random forest classification.—We identified

structural models for each disturbance agent
using a random forest machine learning classifi-
cation approach with the randomForest package
(Liaw and Wiener 2002) in R 3.5. This algorithm
produces a series of iterative decision trees using
binary, recursive partitioning that is based on
predictor values and known classes (Breiman

Fig. 3. Graphical representations of canopy structural measures for all five CSTs describe in Table 2: height (A)
area and density, (B) openness, (C) complexity, and (D) arrangement categories described in full in Table 1 and
defined mathematically in Atkins et al. 2018b.
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2001, Cutler et al. 2007). Random forest uses a
series of uncorrelated models (decisions trees) to
build a composite classification with a statistical
breakdown that shows which variables are the
most significant in contrasting known classes by
describing how influential they are to model
accuracy. Variables that lead to a larger mean
decrease in accuracy when removed from the
model are more influential in the classification
process. This technique has been useful in other
related, data-rich ecological applications (Juel
et al. 2015, Belgiu and Dr�agut� 2016, Atkins et al.
2018e) including forest cover and disturbance
detection using remote sensing (Healey et al.
2018).

We used a two-step procedure to produce par-
simonious random forest structural models sepa-
rately for each disturbance agent—comparing
disturbed and non-disturbed areas at each site.
We first built kitchen sink models using the full
suite of canopy structural metrics as predictors
(Table 2) and then built more parsimonious
models through an iterative process of parameter
selection retaining only the most influential
parameters, minimizing out-of-bag error while
constraining the number of input parameters.
We compared the resulting multivariate models

to single-variable models that use vegetation area
index (VAI)—a proxy for leaf area that is derived
from terrestrial lidar—as the only predictor. This
was done for each disturbance, at each site, inde-
pendently. VAI-only models were evaluated
using the same random forest classification pro-
cedure in order to evaluate whether additional
information is supplied by multidimensional
structural models over leaf-area-only models via
classification accuracy. We also included a para-
metric statistical approach using Student’s t-test
(Appendix S1: Table S1) with effect size calcula-
tions (Cohen’s d) to examine significant changes
between disturbance and undisturbed areas.

RESULTS

Fire, Great Smoky Mountains National Park,
Tennessee
Ground fire at GRSM reduced VAI primarily

in the understory. The structural model included
reductions to vegetation area (VAI), the peak
canopy VAI, or the average height of maximum
VAI (VAIpeak) and increases in mean outer
canopy height (MOCH). VAI decreased from
7.3 � 0.4 in 2016 (pre-fire) to 6.4 � 0.8 in 2017
(post-fire; values following � are standard

Table 3. Signature structural model output and error.

Site n

Signature
model

constituents
CE

(OOB)

VAI
model
CE

(OOB) Description of change

GRSM, ground
fire

37 VAI, MOCH,
VAIpeak

18.52 25.93 Decrease in overall VAI, primarily from the densest areas.

HBEF
Light, ice storm 20 VAIpeak,

VAImax,
15.00 50 The average maximum heights, height of peak leaf area

Moderate, ice
storm

20 VAIpeak, rZVAI 2.5 37.5 Height and leaf area decrease, while complexity of the forest
increases

Heavy, ice
storm

10 VAIpeak, rZVAI 0 25 Height and leaf area decrease, while complexity of the forest
increases

IP, beech bark
disease

61 PC, VAImax 6.56 42.62 A more open canopy, but dense areas become denser

HARV, hemlock
woolly adelgid

38 RT, ENL 21.3 35.7 Forest complexity increases with progressing infestation and
increasing mortality

UMBS
2012, senescence 175 PC, H, RC,

rZVAI

13.14 48 Height and leaf area variance decrease, while the forest
becomes more porous and less complex

2016, senescence 62 RC, RT, PC 20.97 53.23 Complexity and height variance decrease
FERN, chronic
acidification

30 MOCH, PC,
rZVAI, rH

20 50 Increases canopy height and makes the canopy less open

Note: n represents number of plots for analysis. CE, classification error; OOB, out of bag.
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deviations here and following through the
manuscript). VAIpeak decreased from 3.2 � 0.6 to
2.5 � 0.4, while MOCH increased from
20.0 � 3.5 m to 24.2 � 4.8 m as the allocation of
vegetation in the upper canopy increased relative
to the fire-impacted subcanopy. Of the 13 post-
fire scans, 11 were correctly classified, as were 11
of the 14 pre-fire scans, for a 15.4–21.4% classifi-
cation error rate, respectively, with a total out-of-
bag (OOB) error of 18.5% compared to the VAI-
only model which had a classification error of
25.9% (Table 3). t-Test results indicate that fire
significantly reduced overall VAI (P = 0.002)
with a very large effect observed between pre-
and post-disturbance plots (d = 1.33; Appendix S1:
Table S1).

Ice storm, Hubbard Brook Experimental Forest
Across all severity levels (light, moderate, and

heavy), ice primarily affected VAI in the upper
canopy. The structural model included decreases
in the height of peak vegetation area (VAIpeak),
while the heavy and moderate severity levels
showed increased variability in canopy height. In
the heavy ice treatment, VAIpeak shifted down-
ward from 3.4 � 0.2 to 2.2 � 0.6, in the moder-
ate treatment from 3.4 � 0.4 to 2.6 � 0.5, and in
the light treatment from 3.6 � 0.7 to 2.9 � 0.3.
Structural variability, expressed in the model as
rZVAI—the standard deviation of the height of
peak VAI—increased in the heavy treatment
from 3.8 � 0.7 to 6.6 � 0.7 m, and in the moder-
ate treatment from 3.9 � 0.7 to 5.4 � 0.9 m. The
structural model of the light ice treatment
retained overall maximum leaf area (VAImax),
which decreased from 6.7 � 1.1 to 5.4 � 0.6.
Classification accuracy increased with distur-
bance severity, indicating severe ice disturbance
modified the canopy in a more consistent way.
All 20 of the scans for the heavy treatment were
classified correctly for an OOB error rate of 0%.
39 of the 40 moderate severity scans were classi-
fied correctly for an OOB error rate of 2.5%. 17 of
20 light severity scans were classified correctly
for an OOB rate of 15%. Classification errors for
VAI-only models were higher for all treatments
(Table 3). Significant differences with large
effects in VAI using the parametric, t-test
approach were only observed for moderate
(P = 0.002; d = 1.06) and heavy (P = <0.001;
d = 1.96) treatments.

Pathogen, beech bark disease at Indian Point,
Michigan
Beech bark disease made canopies more por-

ous and open over time as diffuse mortality of
canopy trees advanced. However, the overall
density of vegetation area in the densest areas of
the forest increased, likely a function of increased
forest floor light availability resulting in the
growth release of lower canopy seedlings and
saplings. Canopy porosity (PC) increased as the
infestation progressed from 0.6 � 0.4 in 2014 to
0.7 � 0.03 in 2017, while VAImax increased from
5.1 � 0.8 to 6.7 � 0.7. 17 of 19 scans for 2014 and
40 of 43 scans for 2017 classified correctly, 10.5%
and 4.7% success rate, respectively, for a total
OOB error rate of 6.6%. Classification errors for
the VAI-only model were higher (42.6%), and no
significant differences or effects were observed in
VAI from the parametric approach.

Insect defoliation, Hemlock woolly adelgid at
Harvard Forest, Massachusetts
Areas more severely affected by hemlock

woolly adelgid were more structurally complex,
with increased canopy layering and more vari-
able heights resulting from disturbance. A
change in canopy layering is likely caused by a
progression of foliar loss from the lower to upper
crown as infection expands. The CST model
included top rugosity (RT) and the effective num-
ber of layers (ENL). High mortality areas of the
forest were more complex (RT = 3.5 � 0.6 m;
ENL = 17.3 � 1.5) than low mortality areas
(RT = 2.9 � 0.5 m; ENL = 15.3 � 1.4). Four of
the 6 high mortality scans were classified cor-
rectly by the model, as were 7 of the 8 low mor-
tality scans for an overall OOB error rate of
21.4%. Classification error for the VAI-only
model was higher (35.7%), and no significant dif-
ferences or effects were observed in VAI from the
parametric approach.

Successional change/senescence, University of
Michigan Biological Station, Michigan
Senescence of early successional trees reduced

canopy complexity, lowering the height of the
densest concentration of leaves. This resulted in
a more open canopy, pointing to a homogeniza-
tion of canopy structure as a function of the mor-
tality of the tallest trees. The structural model
included RC, rZVAI, PC, and H. Four years
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following the commencement of tree decline,
treatment and control, RC was 10.5 � 3.2 m and
13.1 � 5.3 m, H was 8.1 � 1.3 m and
9.2 � 1.7 m, PC was 0.67 � 0.04 and 0.70 � 0.04,
and rZVAI was 4.6 � 0.9 m and 5.4 � 1.0,
respectively. Eight years after treatment, dis-
turbed and control forest canopy complexity,
maximum canopy height, and the variability of
canopy height diverged even more. The 8-yr
structural model included RC, PC, and RT, which
were 8.0 � 3.4 m to 14.3 � 6.8 m, 0.70 � 0.06 to
0.70 � 0.04, and 4.6 � 1.0 m to 5.9 � 1.7 m in
treatment and control forests, respectively. For
2012 scans, 90 of the 99 control scans (US-UMB)
were classified correctly, while 62 of 76 treatment
scans (US-UMd) were classified correctly for a
total OOB error rate of 13.1%. For 2016 scans, 40
of the 44 control scans (US-UMB) were classified
correctly, while 9 of 18 treatment scans (US-
UMd) were classified correctly for a total OOB
error rate of 20.9%. No significant differences or
effects were observed in VAI. Classification
errors for VAI-only models were higher for both
years (2012, 48.0%; 2016, 53.2%), and no signifi-
cant differences or effects were observed in VAI
from the parametric approach.

Chronic acidification, Fernow Experimental Forest
Chronic acid deposition resulted in a taller

canopy that was more porous, open, and variable
than the control. Vegetation in the treatment for-
est was concentrated at higher canopy positions
and coincided with a more open subcanopy. The
control canopy was shorter and vegetation more
dispersed. The nitrogen and sulfur amended for-
est was associated with a higher canopy, suggest-
ing growth stimulation of the upper canopy, and
a loss of subcanopy vegetation. The structural
model included maximum canopy height (Hmax),
canopy porosity (PC), the standard deviation of
the height of maximum VAI density (rZVAI,),
and the standard deviation of mean leaf height
(rH). In comparing treatment and control sites,
respectively, acid deposition increased canopy
porosity from 0.6 � 0.03 to 0.7 � 0.04, elevated
Hmax from 24.6 � 1.5 m to 27 � 2.4 m,
enhanced variance in the height of VAImax from
6.2 � 1.2 to 7.8 � 1.8, and raised the variance in
mean leaf height from 4.5 � 0.8 m to
5.5 � 1.2 m. 14 of 17 scans from the treatment
watershed and 10 of 13 scans from the control

watershed were classified correctly, 17.6% and
23.0% success rates, respectively, with a total
OOB error rate of 20%. Classification error for
the VAI-only model was higher (50%), and no
significant differences or effects were observed in
VAI from the parametric approach.

Synthesis: patterns of change among disturbance
agents
Though our ability to make broad generaliza-

tions about disturbance patterns from this study
is limited by lack of replication, similarities
among disturbance agents (Fig. 4) were sugges-
tive and interesting. Ice and fire, both pulse dis-
turbances, primarily reduced vegetation area/
density and height; in contrast, age-related senes-
cence, pathogens, and acidification-affected veg-
etation arrangement and complexity (Fig. 4A, B;
Table 3). Structural differentiation from beech
bark disease, which is both a pathogen and an
insect syndrome disturbance, was characterized
by changes in area/density and arrangement
(Table 2). Not only was there direct, physical loss
of vegetation through defoliation, but also whole
tree mortality created gaps in the canopy that
change measures such as canopy porosity. This is
in stark contrast to disturbance agents such as
fire, ice, or acidification that at low to moderate
levels rarely result in whole tree senescence.
These emergent similarities inform areas of
future inquiry of structural differentiation we
observe among disturbance agents.

DISCUSSION

Our findings support our hypothesis that
canopy structural differentiation may be viewed
as a function of the individual agent of a given
disturbance, as each disturbance agent altered a
unique combination of canopy structural traits
(Table 3). As hypothesized, fire and ice modified
the amount and distribution of leaf area within
the canopy, while pathogens, insect, age-related
senescence, and acidification changed canopy
arrangement, height, and/or complexity. Among
the six disturbance agents examined, only two
statistically, significantly reduced leaf area
(Appendix S1: Table S1) and only fire retained
VAI as an influential model parameter, demon-
strating that moderate severity disturbances can
be more effectively and consistently
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distinguished from undisturbed areas using
CSTs (Fig 5, Table 3; Appendix S1: Table S1).
There was no uniform modification of a single
structural trait such as leaf area. Rather, distur-
bance agents typically altered multiple, different
CST metrics. Patterns, however, were evident
among disturbance agents. Fire and ice were best
described by how they affect the amount and
variability of leaf area, while other disturbances
were best described by how they alter canopy
complexity (Fig. 4).

Beyond singular measures of structural change
We found moderate severity disturbance

agents can, but often do not, reduce total leaf
area. This finding suggests that the characteriza-
tion of disturbance-related structural changes
based on leaf area alone fails to describe struc-
tural outcomes observed in disturbed sites rela-
tive to undisturbed areas. This is likely due to
how slower acting disturbances (e.g., certain
pathogens and insects, as well as age-related
senescence) allow sufficient time for compen-
satory foliar replacement to occur as mortality
progresses (Raffa et al. 2008, Gherlenda et al.
2016)—either through regrowth or subcanopy

response. In contrast, disturbances such as fire
and extreme weather events occur abruptly and
may temporarily reduce leaf area (Bond-Lam-
berty et al. 2002, Beringer et al. 2003). Addition-
ally, insect or pathogen outbreaks, such as bark
beetle infestations, are pulse disturbances and
occur over much shorter time frames than similar
disturbances we surveyed. This would not neces-
sarily allow time for compensatory regrowth,
making the likely structural outcomes more simi-
lar to those of fire or ice surveyed here.
Four of the disturbance agents surveyed were

best characterized by metrics that describe
changes in leaf area location, density, or variance
rather than total leaf area. In our study, only two
of the disturbance agents we examined signifi-
cantly reduced leaf area based on traditional
parametric statistical tests—fire (GRSM) with a
10.2% reduction and ice with 13.9% and 26.2%
reductions at moderate and heavy ice loads,
respectively (Appendix S1: Table S1)—but again,
only fire included leaf area as parameter in the
multivariate structural model (Table 2). These
observed reductions in leaf area are within the
range of other similar disturbances including a
2–25% reduction in leaf area following an ice

Fig. 4. Relative change (%) for ground fire and ice (A) and senescence, hemlock woolly adelgid, beech bark
disease, and chronic acidification (B) based on the absolute value of percentage change for leaf area, and for
canopy structural traits defined in Table 2 and illustrated in Fig. 3.
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storm in Quebec (Colpron-Tremblay and Lavoie
2010); a 10–30% reduction in canopy cover fol-
lowing hurricane-force winds in North Carolina
(Busing et al. 2009); 33% reduction in leaf area
following ice storms in the northeastern USA
(Rhoads et al. 2002); and a 30% reduction in leaf
area following drought in northern Arizona
(Classen et al. 2006). Despite similarities in the
magnitude of change relative to those studies,
reductions in leaf area from fire and ice were
concentrated in different canopy strata
(Appendix S2 and S3), a dimensional structural
change not captured by dimensionless measures
of total leaf area. Using only statistical paramet-
ric approaches focused on leaf area, the ice and
fire would be the only detectable disturbances.

Beyond leaf area, our analysis shows that
changes in individual measures of canopy
traits, even integrative measures, are insuffi-
cient to characterize structural differentiation
among disturbance agents. For example,
canopy rugosity, an integrative complexity
measure strongly tied to ecosystem functioning
(Atkins et al. 2018c, Gough et al. 2019), chan-
ged in response to disturbance in only half of
the disturbance agents surveyed (Fig. 5). More-
over, the directionality of change in canopy
complexity, when it occurred, was mixed. Ice
storms (HBEF) and insect invasion (HARV)
increased canopy complexity, while age-related
senescence (US-UMd) decreased canopy com-
plexity (Fig. 5).

Fig. 5. At top, canopy rugosity by site and disturbance (e.g., control vs treatment, low to high, pre and post).
At bottom, vegetation area index as same. For HBEF, L/M is the combination of the low and moderate treat-
ments, and H/D is the average of the heavy and double treatments.
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Consistency of agent-specific structural
differentiation

We found that model classification error dif-
fered among disturbance agents, indicating vari-
ability in the consistency of structural
differentiation among disturbance agents. Low
model classification error for ice storms, patho-
gens, and beech bark disease suggests these dis-
turbances imposed similar, more uniform
structural changes within sampled landscapes—
that any affected section of the canopy looked
like other affected areas within the same ecosys-
tem. In contrast, models of age-related senes-
cence, acidification, hemlock woolly adelgid, and
fire had higher classification errors, which sug-
gests structural differentiation from these distur-
bances was more spatially variable, and less well
constrained.

The degree of consistency in structural change
among sites may be related to the distribution
and timing of tree mortality as a function of a
given disturbance agent. For example, both the
rate and spatial pattern of pest and pathogen tree
mortality are linked to invader-specific feeding
(Orwig and Foster 1998), mating, and dispersal
patterns (Walter et al. 2016). Our models for
pathogen and insect infestation may be more
well constrained, compared to other disturbance
agents, because the tree species these disturbance
agents target are distributed evenly on the land-
scape. For example, hemlocks, including those at
Harvard Forest surveyed here, often grow in
dense monospecific stands on uniform soils. At
the individual tree scale, the advance of wooly
adelgid within an infected crown proceeds uni-
formly from the lower to upper crown (Orwig
and Foster 1998). In contrast, the distribution of
tree mortality following ground fires in composi-
tionally diverse forests, such as GRSM, may be
much more variable because large spatial differ-
ences in burn severity are associated with small-
scale changes in microclimate, topography, fuel
load, and the abundance of fire-susceptible spe-
cies and individuals (Hengst and Dawson 1994,
Morton et al. 2011, Turner et al. 2016).

Despite apparent differences in structural out-
comes among disturbance agents, we cannot dis-
card the possibility that our observations were
dependent upon site conditions, such as spatial
variation in vegetation composition, stand age,
and existing structure, which could affect the

uniformity of structural change within each dis-
turbed landscape. While this analysis provides
novel insight into how disturbance agents alter
canopy and forest structure, we are limited in
our ability to generate any generalized model of
CSTs and disturbance due to a lack of replication.
In our analysis, site and disturbance agent are
confounding variables. Alternatively, it could be
argued disturbance agents with lower model
classification errors simply create greater struc-
tural differentiation between disturbed and
undisturbed areas than those with higher classifi-
cation errors, or that sites differed in some sub-
stantial, yet unaccounted for manner. Without
further replication, there are limitations and
caveats that must be made, even if this approach
provides novel insight.

Application: the detection of moderate severity
disturbance through remote sensing
Our findings suggest that the detection of

moderate severity disturbance requires an
approach that relies less heavily on vegetation
area or quantity but rather considers multiple
dimensions of structural change. Disturbance
detection via conventional passive optical remote
sensing (e.g., Landsat, MODIS) relies heavily on
observable changes in leaf area (Foster et al.
1999, Cohen and Goward 2004, Classen et al.
2006, Frolking et al. 2009, Cohen et al. 2016), veg-
etation cover (Cohen and Goward 2004, Sto-
janova et al. 2010), or greenness (Atkins et al.
2018c). As a result, optical remote sensing meth-
ods may fail to detect low-to-moderate severity
disturbances that rearrange, rather than reduce
total leaf area. Optical remote sensing from air-
and spaceborne platforms has been repeatedly
shown to successfully detect rapidly occurring,
coarse-scale disturbances that severely reduce
leaf area or canopy cover (Frolking et al. 2009,
Healy et al. 2018). However, these methods are
ill-suited for small-scale, diffuse, and/or low-to-
moderate severity disturbances (McDowell 2015,
Cohen et al. 2016) which are increasing globally
(Hicke et al. 2012, Simler-Williamson et al. 2019).
This may be due to the relatively coarse spatial
resolution of many optical methods, resolutions
often higher than that necessary to detect distur-
bance; for example, the spatial resolution of
Landsat is 30 m, while MODIS is 250 m across,
both notably larger than single tree crowns; or it
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may be a function of viewpoint, as optical meth-
ods only see the forest from the top-of-the-
canopy, thus lacking any multidimensionality
that can be gained through under-canopy or
through-canopy measures of structure.

A reliance on changes in leaf area or cover also
limits the ability of optical remote sensing to
detect disturbance agent or source. Newer space-
borne, active sensors (e.g., Global Ecosystem
Dynamics Investigation [GEDI] and IceSAT2)
that explicitly map multidimensional ecosystem
structure offer a means to surmount these detec-
tion gaps and offer many potential scaling
advantages (Stavros et al. 2017, Hancock 2019,
Patterson et al. 2019, Dubayah 2020). In the
future, the integration of long-term data records
from optical remote sensing platforms (e.g.,
Landsat, MODIS) with the structural detection
abilities of active sensors (e.g., GEDI, IceSAT2)
will expand our ability to detect, identify, and
estimate disturbance (McDowell 2015) as well as
describe structural change post-disturbance.

While our study lays the foundation for future
work by demonstrating the utility of CSTs to char-
acterize and detect moderate disturbance, we
acknowledge the caveats and limitations. Our
case-study, observational approach shows the
potential for this work, but does not control for
site effects or site interactions with disturbance,
which could alter how ecosystems respond to a
given disturbance (Johnstone et al. 2016, Hille-
brand et al. 2018). Additional investigation is nec-
essary to evaluate the consistency of structural
patterns within and among disturbance agents.
Additionally, we did not consider the effect of co-
occurring or compounding disturbances, nor did
we investigate important disturbances such as
drought, which will increasingly affect larger
areas at greater severities over this century
(Adams et al. 2012, Gutierrez-Velez et al. 2014,
McDowell and Allen 2015, Clark 2016, Atkins and
Agee 2019, Stovall et al. 2019, Stovall et al. 2019).
Finally, our approach did not standardize for time
since disturbance, a difficulty given large agent-
specific variation in the timing and duration of
defoliation and/or tree mortality. Despite these
limitations, our work lays a foundation for how to
characterize the structural differentiation of dis-
turbance agents and shows the degree, breadth,
variation, and functional implications of structural
change among disturbance agents.

CONCLUSIONS

Disturbance agents differ in how they reshape
forest structure. We have shown that the struc-
tural changes that result from disturbance are
multidimensional, and the direction and magni-
tude of structural change cannot be adequately
summarized using individual parameters.
Instead, multiple measures of CSTs, in addition
to leaf area, better characterize disturbance. We
conclude that a multidimensional-based
approached that considers several elements of
structural differentiation may be useful to
improve disturbance diagnostics, ecological fore-
casting, forest management, and earth system
modeling (Dietze and Matthes 2014, Fisher 2018,
Fahey 2018); however, we must build off of this
work before broad generalizations can be made.
Future inquiry via manipulative experiments
and replicated empirical surveys is needed to
understand functional significance of canopy
structural change (Matheny et al. 2014, Stuart-
Ha€entjens et al. 2015, Aron et al. 2019, Smith
et al. 2019). Linking terrestrial lidar-derived mea-
sures of canopy complexity to emergent air- and
spaceborne platforms will further scale our abil-
ity to detect disturbance-related structural
change at large spatial scales.
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